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Graphene’s low-energy electronic excitations obey a 2+1-dimensional Dirac Hamiltonian. After extending
this Hamiltonian to include interactions with a quantized electromagnetic field, we calculate the amplitude
associated with the simplest, tree-level Feynman diagram: the vertex connecting a photon with two electrons.
This amplitude leads to analytic expressions for the three-dimensional angular dependence of photon emission,
the photon-mediated electron-hole recombination rate, and corrections to graphene’s opacity �� and dynamic
conductivity �e2 /2h for situations away from thermal equilibrium, as would occur in a graphene laser. We find
that Ohmic dissipation in perfect graphene can be attributed to spontaneous emission.
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Electron-photon interactions determine the optoelectronic
properties of a material. The electrons in graphene, a single
atomic layer of graphite, exhibit superlative electronic prop-
erties associated with their exotic Hamiltonian.1,2 In particu-
lar, a tight-binding model3 of graphene produces a Hamil-
tonian that, for low-energy excitations, is formally identical
to a 2+1-dimensional Dirac equation for massless fermions,4

with the Fermi velocity and the sublattice state vector filling
the roles of the speed of light and spin, respectively. As part
of an effort to understand how electron-hole recombination
might limit the function of a graphene-based transistor, we
use this Dirac Hamiltonian to calculate the amplitude for the
electron-photon interaction diagrammed in Fig. 1. Rotating
this diagram with respect to the time axis allows the consid-
eration of both photon emission �i.e., recombination� and ab-
sorption rates, which we relate to graphene’s opacity and
dynamic conductivity.

These measurable5–8 properties have been previously
treated using semiclassical methods �where the electro-
magnetic field is not quantized� within the Kubo and Land-
auer formalisms9–13 and perturbation theory.6,14 Our fully
quantum-mechanical calculation reproduces results found
previously, such as �� for the optical opacity6,8,15 and
�e2 /2h �Refs. 10–15� for the zero-temperature conductivity.
We extend these previous results to nonequilibrium situa-
tions �e.g., population inversion� and specify the full angular
dependence of photon emission/absorption. Furthermore, we
identify spontaneous emission as the mechanism of dissipa-
tion, present even in idealized graphene, that is usually left
unspecified.12–15

The carbon atoms in graphene form a two-dimensional
honeycomb network with two inequivalent atomic sites per
unit cell. In the simplest tight-binding description of
graphene, an electronic energy E is associated with each
atomic site in the sheet, and an energy t parametrizes the
probability of an electron hopping from one site to its neigh-
bor on the other sublattice. An operator ARj

† creates a 2Pz

electron on the “A” site in cell j with a corresponding de-
struction operator ARj

. With similar operators for the “B”
sites, the total Hamiltonian H is

H = E�
j

�ARj

† ARj
+ BRj

† BRj
� − t�

�i,j�
�ARi

† BRj
+ H.c.� , �1�

where j runs over the N sites in the sheet and i runs over
the nearest neighbors of the site j. Spin indices on the ope-
rators and the sums are understood. Fourier transform-
ing the creation and annihilation operators �e.g., ARi

=� jAQj
exp�iRi ·Q j� /�N, where the Q j =

m
N1

b1+ n
N2

b2 are the
N=N1N2 wave vectors in the first Brillouin zone� allows
Hamiltonian �1� to be written,

H = �
j

�AQj

† BQj

† �H	AQj

BQj


 . �2�

There are two spin states per Q j and two mobile 2Pz elec-
trons per cell, so the first Brillouin zone �Fig. 2� is exactly
filled in electrically neutral graphene at zero temperature.
The energy origin is set at the energy of the highest occupied
states, which are those at the Brillouin zone corners K�

=�
2b2+b1

3 +mb1+nb2.16 The label �= �1 indexes the two in-
equivalent corners. For Q near a K� point the single-particle
Hamiltonian H is

FIG. 1. Schematic of a representative emission process �left�
and the corresponding Feynman diagram �right�. The photon lives
in 3D space, while the electrons are confined to the graphene sheet.
The initial electron is described by its momentum pi=�ki and its
pseudospin ⇒, which for a conduction electron near K+ is directed
along ki. Interacting with the photon �wave vector k� and polariza-
tion �� destroys the conduction electron, creating a valence-band
electron with momentum �k f and pseudospin ⇐.
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H = vF���xpx + �ypy� , �3�

where the momentum p=�k=��Q−K�. With � defined
by the in-plane components p� of p= p� + pzẑ according to
p� = p�cos �x̂+sin �ŷ�, the corresponding eigenvalue equa-
tion is

H�	� =
�vFp
�2

	 0 e−i��

ei�� 0

	 e−i��/2


�ei��/2 
 = 
vFp�	� , �4�

where the band index 
= �1 labels whether the energy
is positive or negative �i.e., conduction or valence�.
Thus Hamiltonian �3� produces a linear dispersion relation
E= �vFp. The product 
� /2 gives the helicity eigenvalue
for the state �	�, where the helicity operator is defined as

ĥ=H / �2�vFp�.
Having identified the eigenspinors �	�p� ,
 ,��� of the

single-particle Hamiltonian H, we can rewrite the total
Hamiltonian H in terms of operators that create �CQ

† � and
destroy �CQ� energy eigenstates,

H = �
Q

�vFp��	c�Cc,Q
† + �	v�Cv,Q

† �

�	 0 e−i��

ei�� 0

��	c�Cc,Q + �	v�Cv,Q� , �5�

where the sum is over Q near K� and c �v� refers to the
conduction �valence� band.

We introduce the electromagnetic field with a Peierls
�minimal coupling� substitution p→p−qA /c, treating the
new vector potential term17 as a quantized perturbation H� in
the full Hamiltonian H=H0+H�,

A�r,t� = c�
kj

� 2��

�rV

��̂ jCkje

ik·r−i
t + �̂ j
�Ckj

† e−ik·r+i
t� .

�6�

Here j indexes the photon’s polarization states, V is the nor-
malization volume, �r is the relative permittivity, and 

=c�k�. As is evident from the appearance of the speed of light
c �and not the Fermi velocity vF� in this substitution, the
electron-photon coupling implied follows from the local
gauge invariance of the standard model Lagrangian, and is
not related to the properties of Hamiltonian �3� under gauge
transformations.

The electron-photon interaction rate can be calculated us-
ing the standard arguments of Fermi’s Golden Rule, suitably
modified to account for the system’s mixed dimensionality.
The rate �i→f to go from an eigenstate ��i� of the unper-
turbed electronic Hamiltonian H0 to a given final state �� f� is

�i→f =
d

dt
��� f�t����t���2, �7�

where

�� f�t����t�� =
1

i�
�

0

t

�� f�t���H��t����i�t���dt� 
 M . �8�

In the position representation, the time-dependent solutions
to the unperturbed electronic H have the form

�r����t�� =
1

�A
ei�k�·r�−
t�F�z��	��k�,
,��� , �9�

where 
=vF�k�� and A is the graphene area. Initially we
consider processes that create a valence electron �� f�
� �	��k�v ,−1 ,��� and a photon �k� , �̂�, while destroying a
conduction electron ��i�� �	��k�c ,1 ,���. Then

M =
iqvF

�
� 2��

V
�r
�

0

�t

ei�
v+
−
c�t�dt�

� �
A

e−i�k�v+k��−k�c�·x��d2x�

A
� �F�z���2e−ik�zz�dz�

� �	v��� · �̂��	c��nc���nv���n���Cv
†C�

†Cc�n���nv��nc� .

�10�

Derived from the z extent of the carbon 2Pz atomic orbitals,
the normalized function F�z� is only appreciable within a few
angstroms of the graphene plane. Since we are considering
photons with optical or longer wavelengths �=2� /k�, the
integral over dz� gives unity to excellent approximation. In
atomic physics this step applies to all three spatial dimen-
sions �eik·r�1� and is known as the dipole approximation.

We square M and consider the interval �t to be short
compared to the lifetime 1 /� and long compared to the time
scale 1 /
 set by the energy of the transition, i.e., 1 /���t
�1 /
. In this limit, with large area A,

K�

K�

b1b2

x

y

z

��

����

��
E

kx

ky

absorption emission

FIG. 2. The hexagonal first Brillouin zone �left� and the disper-
sion relation near the points K� �right�. On the left, the K+ points
are indicated by thin arrows and the reciprocal lattice primitive
vectors bi by thick arrows. Shading indicates how translating some
slices of the hexagon by reciprocal lattice vectors reconstructs an
equivalent Brillouin zone, here shown in a bowtie configuration,
that centers the inequivalent K� points in two triangular regions.
Near the K� points the dispersion relation is linear in �k�, which
gives the Dirac cones shown on the right. Absorption or emission of
a photon transfers an electron from one cone to the other.
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d�c→v =
q2vF

2

�

2��

A2V
�r
��	v��� · �̂��	c��2

�2�����
v + 
 − 
c���2��2A�2�k�v + k�� − k�c�

� nc�1 − nv��1 + n��
Ad2k�v

�2��2

Vd3k�

�2��3 , �11�

where we have used the standard relations C†�n�
=�1�n�1�n�, C�n�=�n���n−1��, and �n� �n�=�n�n with
the upper �lower� sign chosen for bosons �fermions�. Thus
we see that the recombination rate is proportional to the
number of conduction electrons nc and the number of holes
1−nv. The first and the second parts of 1+n� correspond to
spontaneous and stimulated emission, respectively.18

To evaluate the angular matrix element in Eq. �11�, we

define an orthonormal triple k̂�= �sin �� cos �� ,

sin �� sin �� , cos ���, �̂1= ẑ� k̂� / �ẑ� k̂��, and �̂2= k̂�

� �̂1 / �k̂�� �̂1� that describes the photon and its possible po-
larizations. Summing over the possible polarizations j of the
created photon gives

�
j

��	v��� · �̂ j
��	c��2 = 1 − sin2 �� sin2��c/2 + �v/2 − ��� .

�12�

As pz does not appear in H, the component of the photon
polarization along ẑ does not contribute to this matrix ele-
ment. The integrals over the energy and momentum � func-
tions in Eq. �11� can now be performed with the result

d�c→v

d��

=
q2

�c
	vF

c

2 
c

��r

nc�1 − nv��1 + n��

1 −
2vF

c
sin �� cos��� − �c� + 	vF

c

2

sin2 ��

�1 − 	vF

c

2

sin2 ���2

��1 −
sin2 �� sin2��� − �c�

1 −
2vF

c
sin �� cos��� − �c� + 	vF

c

2

sin2 ��� . �13�

The last line in Eq. �13� corresponds to the angular matrix
element �Eq. �12��.

Since vF /c is a small number �1 /300,5 several approxi-
mations are in order. To better than 1% accuracy k�c�k�v and
k� /kc�v��2vF /c. The energy of the initial conduction elec-
tron is half that of the photon and of the same magnitude but
opposite sign of the final valence electron. The photon’s mo-
mentum is negligible in comparison to the electrons’; as
a result �c��v and K+↔K− transitions are impossible
in this low-energy limit. To lowest order in vF /c the an-
gular dependence of Eq. �13� is �1−sin2 �� sin2���−�c�
−2

vF

c sin �� cos���−�c��. Thus for small vF /c a conduction
electron is slightly more likely to emit a photon opposite k�c

than along k�c. Figure 3 shows various plots of the angular
distribution in the small vF /c limit, which we will adopt
henceforth.

When averaged over the possible momentum directions of
the conduction electron, the emission or absorption of a pho-
ton depends on the polar angle �� from the normal to the
graphene sheet like 1− 1

2sin2 ��. Because this function falls
off more slowly than the Lambertian function cos �, a
graphene sheet will appear progressively brighter �i.e.,
blacker� at angles away from normal incidence. At this level
of analysis the angular matrix element �Eq. �12��, and thus
the rate, is zero for the metallic nanotube case.19,20 The in-
teraction Hamiltonian contains only photons polarized along

the nanotube axis and such photons do not couple the initial
and final electronic states.

The form of the matrix element �Eq. �12�� indicates that
angular momentum conservation is enforced in an unusual
way in this problem. In a more conventional condensed-

FIG. 3. Polar plot of photon emission distributions in the xz
plane. The dashed �dotted� curve corresponds to the emission from
an initial electron moving along the x axis �y axis� while the solid
black curve represents the average over all k�i directions. The Lam-
bertian function cos � is shown in gray for comparison. The inset
shows the 3D pattern for one choice of k. An electron moving along
y emits a x-polarized photon, and thus cannot emit in the x
direction.

TREE-LEVEL ELECTRON-PHOTON INTERACTIONS IN… PHYSICAL REVIEW B 81, 245401 �2010�

245401-3



matter system a typical optical transition involves bands with
different orbital angular momentum quantum numbers and
allows the possibility of a spin flip. For instance, in gallium
arsenide interband transitions occur between orbitals with S
and P symmetries.21 Here the transition is 2Pz→2Pz and
there is no spin flip. Thus the usual sources of angular mo-
mentum for the photon do not contribute in graphene. The
structure of the matrix element �Eq. �12��, which follows
directly from Hamiltonian �3� and the assumption of mini-
mal coupling, implies that the pseudospin flip creates the
angular momentum � of the photon. We further explore this
connection between pseudospin and angular momentum
elsewhere.20

For states connected by the � functions in Eq. �11�, the
proportionality �c→v�nc�1−nv��1+n�� is general and ap-
plies whether the n’s reflect equilibrium distributions or not.
Nonthermal distributions are commonly handled by intro-
ducing a quasi-Fermi level that differs for electrons and
holes.22 To simply illustrate the time scales relevant for
photon-mediated electron-hole recombination, we consider a
perfect population inversion, i.e., nc=1 and nv=0. Integrat-
ing Eq. �13� over all directions of k� gives the rate for a
conduction electron with energy Ec=�
c=vF�kc to decay
spontaneously �n�=0� via photon emission,

�c→v =
8�

3�r
	vF

c

2


c, �14�

where �=e2 /�c�1 /137 is the fine-structure constant. This
rate corresponds to a lifetime �=1 /� of about 3 ns for a 1 eV
conduction electron.

For thermal populations the averaged transition matrix el-
ement ��M�2�=Tr��c�v���M�2�, where the density operators �

are given by �=e−H/kT /Tr�e−H/kT� and the trace is taken over
the possible occupations: n� �0,1� for the electrons and n
� �0,�� for the photons.23 Evaluating the trace gives Bose
and Fermi distribution functions,

��c→v� =
8�Ec

3�r�
	vF

c

2	 1

e�Ec−��/kT + 1

	1 −

1

e�−Ec−��/kT + 1



�	1 +
1

e2Ec/kT − 1

 , �15�

where we have allowed for a chemical potential �. The sec-
ond line of Eq. �15� shows that recombination stimulated by
the blackbody background becomes important for 2Ec=�

�kT. At room temperature with �=0 a conduction state with
energy Ec=kT�0.025 eV will be populated and decay with
a characteristic lifetime of about 400 ns. For many practical
purposes this rate is negligible, since, for instance, the
second-order �Auger� process gives picosecond lifetimes.24

In contrast, the time reverse of this recombination pro-
cess, photon absorption, is observable practically by the un-
aided eye.6,8 To analyze absorption we proceed as in the
derivation of Eqs. �13� and �14�, this time considering illu-
mination normally incident on the graphene plane ���=0� at
a rate �i=n�cA /�rV. Then the promotion rate �v→c from the
valence to the conduction band is

�v→c = ���1 − nc�nv�i, �16�

where we have included a factor of 4 for the valley and
�normal� spin degeneracies. Discounting spontaneous emis-
sion into the illuminating beam, we take the net absorption
rate �abs to be the promotion rate minus the stimulated emis-
sion rate �nc�1−nv�n�, which gives

�abs = ���nv − nc��i. �17�

With initial nc=0 and nv=1 Eq. �17� reproduces the �� re-
sult for the optical absorption of a graphene sheet6,8 and
identifies spontaneous emission as the source of dissipation.
For nc�nv the absorption is negative, implying gain and the
possibility of a graphene laser.18,25 As before, thermally av-
eraging Eq. �17� replaces the n’s with Fermi functions, with
the result that the absorption goes to zero for �
�kT or
�
�2���.

We can relate the energy absorption rate implied by Eq.
�17� to the conductivity � by invoking Ohm’s Law, which
implies that the power dissipated per unit area is K ·E
=�E2. Here K is the current density and E=− 1

c �A /�t is the
electric field. Since the energy density of the electromagnetic
field is �rE

2 /4�=n��
 /V, we have

� =
�c

4
�nv − nc� =

�e2

2h
�nv − nc� , �18�

which is �e2 /2h at T=0. This expression can be written

� =
�e2

4h
�tanh	�
 + 2�

4kT

 + tanh	�
 − 2�

4kT

� �19�

after thermal averaging, which is identical to the result found
previously.7,8,15 Our calculation, like the previous ones, is
not rigorous at 
=0, as the dc limit explicitly violates the
assumption required to generate the energy � function in
Eq. �11�.

In conclusion, we have performed the first calculation of
graphene’s optical properties with a quantized electromag-
netic field. The calculation is fully quantum mechanical and
free of thermodynamic assumptions until the final step,
which allows the treatment of systems far from thermal equi-
librium. Furthermore, the inherently three-dimensional �3D�
formalism gives amplitudes as a function of photon polariza-
tion and propagation direction relative to the graphene plane.
The dependence on electron and photon state occupation
numbers follows directly from their fermionic and bosonic
commutation relations. The former result in Pauli blocking
while the latter give terms that can be identified with spon-
taneous and stimulated emission. Spontaneous emission
proves to be a source of dissipation present even in idealized
graphene, with an implied violation of time-reversal symme-
try whose introduction can be traced back to the use of Fer-
mi’s Golden Rule. Stimulated emission from graphene could
prove technologically useful, since an electronic population
inversion would allow graphene to serve as the gain medium
in a laser tunable over a broadband of frequencies.
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